Home ios objective-c interview outline
Post
Cancel

ios objective-c interview outline

  1. OC对象

    实例对象的isa & ISA_MASK = 类对象地址

    类对象isa & ISA_MASK = 元类对象地址

    源码:objc-runtime-new.h

    objc_object

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    
    struct objc_object {
    private:
       isa_t isa;
    public:
       // assumes this is NOT a tagged pointer object
       Class ISA();
    
       // allows this to be a tagged pointer object
       Class getIsa();
    
       // initIsa() should be used to init the isa of new objects only
       // If this object already has an isa, use changeIsa() for correctness.
       // initInstanceIsa(): objects with no custom RR/AWZ
       // initClassIsa(): class objects
       // initProtocolIsa(): protocol objects
       // initIsa(): other objects
       void initIsa(Class cls);
       void initClassIsa(Class cls);
       void initProtocolIsa(Class cls);
       void initInstanceIsa(Class cls, bool hasCxxDtor);
    
       // changeIsa() should be used to change the isa of existing objects
       // If this is a new object, use initIsa() for performance.
       Class changeIsa(Class newCls);
    
       bool hasNonpointerIsa();
       bool isTaggedPointer();
       bool isBasicTaggedPointer();
       
       // objects may have associated objects?
       bool hasAssociatedObjects();
       bool setHasAssociatedObjects();
       
       // objects may be weakly referenced?
       bool isWeaklyReferenced();
       bool setWeaklyReferenced_nolock();
       
       //object may have -.cxx_destruct implementation?
       bool hasCxxDtor();
       
       // Optimized calls to retain/release methods
       id retain();
       void release();
       id autorelease();
       
       // Implementations of retain/release methods
       id rootRetain();
       bool rootRelease();
       id rootAutoRelease();
       bool rootTryRetain();
       bool rootReleaseShouldDealloc();
       uintptr_t rootRetainCount();
       
       // Implementation of dealloc methods
       bool rootIsDeallocating();
       bool clearDeallocating();
       bool rootDealloc();
    
    private:
       void initIsa(Class newCls, bool nonpointer, bool hasCxxDtor);
       
       // Slow paths for inline control
       id rootAutorelease2();
       uintptr_t overrelease_error();
    
    #if SUPPORT_NONPOINTER_ISA
       // Controls what parts of root{Retain,Release} to emit/inline
       // - Full means the full (slow) implementation
       // - Fast means the fastpaths only
       // - FastOrMsgSend means the fastpaths but checking whether we should call
       //   -retain/-release or Swift, for the usage of objc_{retain,release}
       enum class RRVariant {
           Full,
           Fast,
           FastOrMsgSend,
       };
       
       // Unified retain count manipulation for nonpointer isa
       inline id rootRetain(bool tryRetain, RRVariant variant);
       inline bool rootRelease(bool performDealloc, RRVariant variant);
       id rootRetain_overflow(bool tryRetain);
       uintptr_t rootRelease_underflow(bool performDealloc);
       void clearDeallocating_slow();
    
       // Side table retain count overflow for nonpointer isa
       struct SidetableBorrow { size_t borrowed, remaining; };
    
       void sidetable_lock();
       void sidetable_unlock();
    
       void sidetable_moveExtraRC_nolock(size_t extra_rc, bool isDeallocating, bool weaklyReferenced);
       bool sidetable_addExtraRC_nolock(size_t delta_rc);
       SidetableBorrow sidetable_subExtraRC_nolock(size_t delta_rc);
       size_t sidetable_getExtraRC_nolock();
       void sidetable_clearExtraRC_nolock();
    #endif
    
       // Side-table-only retain count
       bool sidetable_isDeallocating();
       void sidetable_clearDeallocating();
    
       bool sidetable_isWeaklyReferenced();
       void sidetable_setWeaklyReferenced_nolock();
    
       id sidetable_retain(bool locked = false);
       id sidetable_retain_slow(SideTable& table);
    
       uintptr_t sidetable_release(bool locked = false, bool performDealloc = true);
       uintptr_t sidetable_release_slow(SideTable& table, bool performDealloc = true);
    
       bool sidetable_tryRetain();
    
       uintptr_t sidetable_retainCount();
    #if DEBUG
       bool sidetable_present();
    #endif    
    }
    

    objc_class

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    483
    484
    485
    486
    487
    488
    
    struct objc_class: objc_object {
     objc_class(const objc_class&) = delete;
     objc_class(objc_class&&) = delete;
     void operator=(const objc_class&) = delete;
     void operator=(objc_class&&) = delete;
       
       // Class ISA;
       Class superclass;
       cache_t cache; // formerly cache pointer and vtable
       class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
    
       Class getSuperclass() const {
    #if __has_feature(ptrauth_calls)
    #   if ISA_SIGNING_AUTH_MODE == ISA_SIGNING_AUTH
           if (superclass == Nil)
               return Nil;
    
    #if SUPERCLASS_SIGNING_TREAT_UNSIGNED_AS_NIL
           void *stripped = ptrauth_strip((void *)superclass, ISA_SIGNING_KEY);
           if ((void *)superclass == stripped) {
               void *resigned = ptrauth_sign_unauthenticated(stripped, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
               if ((void *)superclass != resigned)
                   return Nil;
           }
    #endif
               
           void *result = ptrauth_auth_data((void *)superclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
           return (Class)result;
    
    #   else
           return (Class)ptrauth_strip((void *)superclass, ISA_SIGNING_KEY);
    #   endif
    #else
           return superclass;
    #endif
       }
       
       void setSuperclass(Class newSuperclass) {
    #if ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ALL
           superclass = (Class)ptrauth_sign_unauthenticated((void *)newSuperclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
    #else
           superclass = newSuperclass;
    #endif
       }
       
       class_rw_t *data() const {
           return bits.data();
       }
       void setData(class_rw_t *newData) {
           bits.setData(newData);
       }    
       
       void setInfo(uint32_t set) {
           ASSERT(isFuture()  ||  isRealized());
           data()->setFlags(set);
       }
    
       void clearInfo(uint32_t clear) {
           ASSERT(isFuture()  ||  isRealized());
           data()->clearFlags(clear);
       }
       
       // set and clear must not overlap
       void changeInfo(uint32_t set, uint32_t clear) {
           ASSERT(isFuture()  ||  isRealized());
           ASSERT((set & clear) == 0);
           data()->changeFlags(set, clear);
       }
       
    #if FAST_HAS_DEFAULT_RR
       bool hasCustomRR() const {
           return !bits.getBit(FAST_HAS_DEFAULT_RR);
       }
       void setHasDefaultRR() {
           bits.setBits(FAST_HAS_DEFAULT_RR);
       }
       void setHasCustomRR() {
           bits.clearBits(FAST_HAS_DEFAULT_RR);
       }
    #else
       bool hasCustomRR() const {
           return !(bits.data()->flags & RW_HAS_DEFAULT_RR);
       }
       void setHasDefaultRR() {
           bits.data()->setFlags(RW_HAS_DEFAULT_RR);
       }
       void setHasCustomRR() {
           bits.data()->clearFlags(RW_HAS_DEFAULT_RR);
       }
    #endif
       
    #if FAST_CACHE_HAS_DEFAULT_AWZ
       bool hasCustomAWZ() const {
           return !cache.getBit(FAST_CACHE_HAS_DEFAULT_AWZ);
       }
       void setHasDefaultAWZ() {
           cache.setBit(FAST_CACHE_HAS_DEFAULT_AWZ);
       }
       void setHasCustomAWZ() {
           cache.clearBit(FAST_CACHE_HAS_DEFAULT_AWZ);
       }
    #else
       bool hasCustomAWZ() const {
           return !(bits.data()->flags & RW_HAS_DEFAULT_AWZ);
       }
       void setHasDefaultAWZ() {
           bits.data()->setFlags(RW_HAS_DEFAULT_AWZ);
       }
       void setHasCustomAWZ() {
           bits.data()->clearFlags(RW_HAS_DEFAULT_AWZ);
       }
    #endif
       
    #if FAST_CACHE_HAS_DEFAULT_CORE
       bool hasCustomCore() const {
           return !cache.getBit(FAST_CACHE_HAS_DEFAULT_CORE);
       }
       void setHasDefaultCore() {
           return cache.setBit(FAST_CACHE_HAS_DEFAULT_CORE);
       }
       void setHasCustomCore() {
           return cache.clearBit(FAST_CACHE_HAS_DEFAULT_CORE);
       }
    #else
       bool hasCustomCore() const {
           return !(bits.data()->flags & RW_HAS_DEFAULT_CORE);
       }
       void setHasDefaultCore() {
           bits.data()->setFlags(RW_HAS_DEFAULT_CORE);
       }
       void setHasCustomCore() {
           bits.data()->clearFlags(RW_HAS_DEFAULT_CORE);
       }
    #endif
       
    #if FAST_CACHE_HAS_CXX_CTOR
       bool hasCxxCtor() {
           ASSERT(isRealized());
           return cache.getBit(FAST_CACHE_HAS_CXX_CTOR);
       }
       void setHasCxxCtor() {
           cache.setBit(FAST_CACHE_HAS_CXX_CTOR);
       }
    #else
       bool hasCxxCtor() {
           ASSERT(isRealized());
           return bits.data()->flags & RW_HAS_CXX_CTOR;
       }
       void setHasCxxCtor() {
           bits.data()->setFlags(RW_HAS_CXX_CTOR);
       }
    #endif
       
    #if FAST_CACHE_HAS_CXX_DTOR
       bool hasCxxDtor() {
           ASSERT(isRealized());
           return cache.getBit(FAST_CACHE_HAS_CXX_DTOR);
       }
       void setHasCxxDtor() {
           cache.setBit(FAST_CACHE_HAS_CXX_DTOR);
       }
    #else
       bool hasCxxDtor() {
           ASSERT(isRealized());
           return bits.data()->flags & RW_HAS_CXX_DTOR;
       }
       void setHasCxxDtor() {
           bits.data()->setFlags(RW_HAS_CXX_DTOR);
       }
    #endif
       
    if FAST_CACHE_REQUIRES_RAW_ISA
       bool instancesRequireRawIsa() {
           return cache.getBit(FAST_CACHE_REQUIRES_RAW_ISA);
       }
       void setInstancesRequireRawIsa() {
           cache.setBit(FAST_CACHE_REQUIRES_RAW_ISA);
       }
    #elif SUPPORT_NONPOINTER_ISA
       bool instancesRequireRawIsa() {
           return bits.data()->flags & RW_REQUIRES_RAW_ISA;
       }
       void setInstancesRequireRawIsa() {
           bits.data()->setFlags(RW_REQUIRES_RAW_ISA);
       }
    #else
       bool instancesRequireRawIsa() {
           return true;
       }
       void setInstancesRequireRawIsa() {
           // nothing
       }
    #endif
       
       void setInstancesRequireRawIsaRecursively(bool inherited = false);
       void printInstancesRequireRawIsa(bool inherited);
       
    #if CONFIG_USE_PREOPT_CACHES
       bool allowsPreoptCaches() const {
           return !(bits.data()->flags & RW_NOPREOPT_CACHE);
       }
       bool allowsPreoptInlinedSels() const {
           return !(bits.data()->flags & RW_NOPREOPT_SELS);
       }
       void setDisallowPreoptCaches() {
           bits.data()->setFlags(RW_NOPREOPT_CACHE | RW_NOPREOPT_SELS);
       }
       void setDisallowPreoptInlinedSels() {
           bits.data()->setFlags(RW_NOPREOPT_SELS);
       }
       void setDisallowPreoptCachesRecursively(const char *why);
       void setDisallowPreoptInlinedSelsRecursively(const char *why);
    #else
       bool allowsPreoptCaches() const { return false; }
       bool allowsPreoptInlinedSels() const { return false; }
       void setDisallowPreoptCaches() { }
       void setDisallowPreoptInlinedSels() { }
       void setDisallowPreoptCachesRecursively(const char *why) { }
       void setDisallowPreoptInlinedSelsRecursively(const char *why) { }
    #endif
       
       bool canAllocNonpointer() {
           ASSERT(!isFuture());
           return !instancesRequireRawIsa();
       }
    
       bool isSwiftStable() {
           return bits.isSwiftStable();
       }
    
       bool isSwiftLegacy() {
           return bits.isSwiftLegacy();
       }
    
       bool isAnySwift() {
           return bits.isAnySwift();
       }
    
       bool isSwiftStable_ButAllowLegacyForNow() {
           return bits.isSwiftStable_ButAllowLegacyForNow();
       }
    
       uint32_t swiftClassFlags() {
           return *(uint32_t *)(&bits + 1);
       }
     
       bool usesSwiftRefcounting() {
           if (!isSwiftStable()) return false;
           return bool(swiftClassFlags() & 2); //ClassFlags::UsesSwiftRefcounting
       }
    
       bool canCallSwiftRR() {
           // !hasCustomCore() is being used as a proxy for isInitialized(). All
           // classes with Swift refcounting are !hasCustomCore() (unless there are
           // category or swizzling shenanigans), but that bit is not set until a
           // class is initialized. Checking isInitialized requires an extra
           // indirection that we want to avoid on RR fast paths.
           //
           // In the unlikely event that someone causes a class with Swift
           // refcounting to be hasCustomCore(), we'll fall back to sending -retain
           // or -release, which is still correct.
           return !hasCustomCore() && usesSwiftRefcounting();
       }
       
       bool isStubClass() const {
           uintptr_t isa = (uintptr_t)isaBits();
           return 1 <= isa && isa < 16;
       }
    
       // Swift stable ABI built for old deployment targets looks weird.
       // The is-legacy bit is set for compatibility with old libobjc.
       // We are on a "new" deployment target so we need to rewrite that bit.
       // These stable-with-legacy-bit classes are distinguished from real
       // legacy classes using another bit in the Swift data
       // (ClassFlags::IsSwiftPreStableABI)
    
       bool isUnfixedBackwardDeployingStableSwift() {
           // Only classes marked as Swift legacy need apply.
           if (!bits.isSwiftLegacy()) return false;
    
           // Check the true legacy vs stable distinguisher.
           // The low bit of Swift's ClassFlags is SET for true legacy
           // and UNSET for stable pretending to be legacy.
           bool isActuallySwiftLegacy = bool(swiftClassFlags() & 1);
           return !isActuallySwiftLegacy;
       }
    
       void fixupBackwardDeployingStableSwift() {
           if (isUnfixedBackwardDeployingStableSwift()) {
               // Class really is stable Swift, pretending to be pre-stable.
               // Fix its lie.
               bits.setIsSwiftStable();
           }
       }
    
       _objc_swiftMetadataInitializer swiftMetadataInitializer() {
           return bits.swiftMetadataInitializer();
       }
    
       // Return YES if the class's ivars are managed by ARC, 
       // or the class is MRC but has ARC-style weak ivars.
       bool hasAutomaticIvars() {
           return data()->ro()->flags & (RO_IS_ARC | RO_HAS_WEAK_WITHOUT_ARC);
       }
    
       // Return YES if the class's ivars are managed by ARC.
       bool isARC() {
           return data()->ro()->flags & RO_IS_ARC;
       }
    
    
       bool forbidsAssociatedObjects() {
           return (data()->flags & RW_FORBIDS_ASSOCIATED_OBJECTS);
       }
    
    #if SUPPORT_NONPOINTER_ISA
       // Tracked in non-pointer isas; not tracked otherwise
    #else
       bool instancesHaveAssociatedObjects() {
           // this may be an unrealized future class in the CF-bridged case
           ASSERT(isFuture()  ||  isRealized());
           return data()->flags & RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS;
       }
    
       void setInstancesHaveAssociatedObjects() {
           // this may be an unrealized future class in the CF-bridged case
           ASSERT(isFuture()  ||  isRealized());
           setInfo(RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS);
       }
    #endif
    
       bool shouldGrowCache() {
           return true;
       }
    
       void setShouldGrowCache(bool) {
           // fixme good or bad for memory use?
       }
    
       bool isInitializing() {
           return getMeta()->data()->flags & RW_INITIALIZING;
       }
    
       void setInitializing() {
           ASSERT(!isMetaClass());
           ISA()->setInfo(RW_INITIALIZING);
       }
    
       bool isInitialized() {
           return getMeta()->data()->flags & RW_INITIALIZED;
       }
    
       void setInitialized();
    
       bool isLoadable() {
           ASSERT(isRealized());
           return true;  // any class registered for +load is definitely loadable
       }
    
       IMP getLoadMethod();
    
       // Locking: To prevent concurrent realization, hold runtimeLock.
       bool isRealized() const {
           return !isStubClass() && (data()->flags & RW_REALIZED);
       }
    
       // Returns true if this is an unrealized future class.
       // Locking: To prevent concurrent realization, hold runtimeLock.
       bool isFuture() const {
           if (isStubClass())
               return false;
           return data()->flags & RW_FUTURE;
       }
    
       bool isMetaClass() const {
           ASSERT_THIS_NOT_NULL;
           ASSERT(isRealized());
    #if FAST_CACHE_META
           return cache.getBit(FAST_CACHE_META);
    #else
           return data()->flags & RW_META;
    #endif
       }
    
       // Like isMetaClass, but also valid on un-realized classes
       bool isMetaClassMaybeUnrealized() {
           static_assert(offsetof(class_rw_t, flags) == offsetof(class_ro_t, flags), "flags alias");
           static_assert(RO_META == RW_META, "flags alias");
           if (isStubClass())
               return false;
           return data()->flags & RW_META;
       }
    
       // NOT identical to this->ISA when this is a metaclass
       Class getMeta() {
           if (isMetaClassMaybeUnrealized()) return (Class)this;
           else return this->ISA();
       }
    
       bool isRootClass() {
           return getSuperclass() == nil;
       }
       bool isRootMetaclass() {
           return ISA() == (Class)this;
       }
     
       // If this class does not have a name already, we can ask Swift to construct one for us.
       const char *installMangledNameForLazilyNamedClass();
    
       // Get the class's mangled name, or NULL if the class has a lazy
       // name that hasn't been created yet.
       const char *nonlazyMangledName() const {
           return bits.safe_ro()->getName();
       }
    
       const char *mangledName() { 
           // fixme can't assert locks here
           ASSERT_THIS_NOT_NULL;
    
           const char *result = nonlazyMangledName();
    
           if (!result) {
               // This class lazily instantiates its name. Emplace and
               // return it.
               result = installMangledNameForLazilyNamedClass();
           }
    
           return result;
       }
       
       const char *demangledName(bool needsLock);
       const char *nameForLogging();
    
       // May be unaligned depending on class's ivars.
       uint32_t unalignedInstanceStart() const {
           ASSERT(isRealized());
           return data()->ro()->instanceStart;
       }
    
       // Class's instance start rounded up to a pointer-size boundary.
       // This is used for ARC layout bitmaps.
       uint32_t alignedInstanceStart() const {
           return word_align(unalignedInstanceStart());
       }
    
       // May be unaligned depending on class's ivars.
       uint32_t unalignedInstanceSize() const {
           ASSERT(isRealized());
           return data()->ro()->instanceSize;
       }
    
       // Class's ivar size rounded up to a pointer-size boundary.
       uint32_t alignedInstanceSize() const {
           return word_align(unalignedInstanceSize());
       }
    
       inline size_t instanceSize(size_t extraBytes) const {
           if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
               return cache.fastInstanceSize(extraBytes);
           }
    
           size_t size = alignedInstanceSize() + extraBytes;
           // CF requires all objects be at least 16 bytes.
           if (size < 16) size = 16;
           return size;
       }
    
       void setInstanceSize(uint32_t newSize) {
           ASSERT(isRealized());
           ASSERT(data()->flags & RW_REALIZING);
           auto ro = data()->ro();
           if (newSize != ro->instanceSize) {
               ASSERT(data()->flags & RW_COPIED_RO);
               *const_cast<uint32_t *>(&ro->instanceSize) = newSize;
           }
           cache.setFastInstanceSize(newSize);
       }
    
       void chooseClassArrayIndex();
    
       void setClassArrayIndex(unsigned Idx) {
           bits.setClassArrayIndex(Idx);
       }
    
       unsigned classArrayIndex() {
           return bits.classArrayIndex();
       }    
    }
    

    class_rw_ext_t

    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    struct class_rw_ext_t {
       DECLARE_AUTHED_PTR_TEMPLATE(class_ro_t)
       class_ro_t_authed_ptr<const class_ro_t> ro;
       method_array_t methods;
       property_array_t properties;
       protocol_array_t protocols;
       char *demangledName;
       uint32_t version;
    };
    

    class_ro_t

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    
    struct class_ro_t {
       uint32_t flags;
       uint32_t instanceStart;
       uint32_t instanceSize;
    #ifdef __LP64__
       uint32_t reserved;
    #endif
       
       union {
           const uint8_t * ivarLayout;
           Class nonMetaclass;
       };
       
       explicit_atomic<const char *> name;
       // With ptrauth, this is signed if it points to a small list, but
       // may be unsigned if it points to a big list.
       void *baseMethodList;
       protocol_list_t * baseProtocols;
       const ivar_list_t * ivars;
    
       const uint8_t * weakIvarLayout;
       property_list_t *baseProperties;    
       
    }
    

    class_rw_t

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    
    struct class_rw_t {
       uint32_t flags;
       uint16_t witness;
    #if SUPPORT_INDEXED_ISA
       uint16_t index;
    #endif
    
       explicit_atomic<uintptr_t> ro_or_rw_ext;
    
       Class firstSubclass;
       Class nextSiblingClass;
       
    private:
       using ro_or_rw_ext_t = objc::PointerUnion<const class_ro_t, class_rw_ext_t, PTRAUTH_STR("class_ro_t"), PTRAUTH_STR("class_rw_ext_t")>;    
       const ro_or_rw_ext_t get_ro_or_rwe() const {
           return ro_or_rw_ext_t{ro_or_rw_ext};
       }
    
       void set_ro_or_rwe(const class_ro_t *ro) {
           ro_or_rw_ext_t{ro, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_relaxed);
       }    
       
       void set_ro_or_rwe(class_rw_ext_t *rwe, const class_ro_t *ro) {
           // the release barrier is so that the class_rw_ext_t::ro initialization
           // is visible to lockless readers
           rwe->ro = ro;
           ro_or_rw_ext_t{rwe, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_release);
       }   
    
    public:
       void setFlags(uint32_t set)
       {
           __c11_atomic_fetch_or((_Atomic(uint32_t) *)&flags, set, __ATOMIC_RELAXED);
       }
    
       void clearFlags(uint32_t clear) 
       {
           __c11_atomic_fetch_and((_Atomic(uint32_t) *)&flags, ~clear, __ATOMIC_RELAXED);
       }
    
       // set and clear must not overlap
       void changeFlags(uint32_t set, uint32_t clear) 
       {
           ASSERT((set & clear) == 0);
    
           uint32_t oldf, newf;
           do {
               oldf = flags;
               newf = (oldf | set) & ~clear;
           } while (!OSAtomicCompareAndSwap32Barrier(oldf, newf, (volatile int32_t *)&flags));
       }
    
       class_rw_ext_t *ext() const {
           return get_ro_or_rwe().dyn_cast<class_rw_ext_t *>(&ro_or_rw_ext);
       }
    
       class_rw_ext_t *extAllocIfNeeded() {
           auto v = get_ro_or_rwe();
           if (fastpath(v.is<class_rw_ext_t *>())) {
               return v.get<class_rw_ext_t *>(&ro_or_rw_ext);
           } else {
               return extAlloc(v.get<const class_ro_t *>(&ro_or_rw_ext));
           }
       }
    
       class_rw_ext_t *deepCopy(const class_ro_t *ro) {
           return extAlloc(ro, true);
       }
    
       const class_ro_t *ro() const {
           auto v = get_ro_or_rwe();
           if (slowpath(v.is<class_rw_ext_t *>())) {
               return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro;
           }
           return v.get<const class_ro_t *>(&ro_or_rw_ext);
       }
    
       void set_ro(const class_ro_t *ro) {
           auto v = get_ro_or_rwe();
           if (v.is<class_rw_ext_t *>()) {
               v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro = ro;
           } else {
               set_ro_or_rwe(ro);
           }
       }
       
       const method_array_t methods() const {
           auto v = get_ro_or_rwe();
           if (v.is<class_rw_ext_t *>()) {
               return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->methods;
           } else {
               return method_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseMethods()};
           }
       }
    
       const property_array_t properties() const {
           auto v = get_ro_or_rwe();
           if (v.is<class_rw_ext_t *>()) {
               return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->properties;
           } else {
               return property_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProperties};
           }
       }
    
       const protocol_array_t protocols() const {
           auto v = get_ro_or_rwe();
           if (v.is<class_rw_ext_t *>()) {
               return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->protocols;
           } else {
               return protocol_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProtocols};
           }
       }    
    } 
    

    class_data_bits_t

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    
    struct class_data_bits_t {
       friend objc_class;
    
       // Values are the FAST_ flags above.
       uintptr_t bits;
    private:
       bool getBit(uintptr_t bit) const
       {
           return bits & bit;
       }
    
       // Atomically set the bits in `set` and clear the bits in `clear`.
       // set and clear must not overlap.
       void setAndClearBits(uintptr_t set, uintptr_t clear)
       {
           ASSERT((set & clear) == 0);
           uintptr_t newBits, oldBits = LoadExclusive(&bits);
           do {
               newBits = (oldBits | set) & ~clear;
           } while (slowpath(!StoreReleaseExclusive(&bits, &oldBits, newBits)));
       }
    
       void setBits(uintptr_t set) {
           __c11_atomic_fetch_or((_Atomic(uintptr_t) *)&bits, set, __ATOMIC_RELAXED);
       }
    
       void clearBits(uintptr_t clear) {
           __c11_atomic_fetch_and((_Atomic(uintptr_t) *)&bits, ~clear, __ATOMIC_RELAXED);
       }
    
    public:
    
       class_rw_t* data() const {
           return (class_rw_t *)(bits & FAST_DATA_MASK);
       }
       void setData(class_rw_t *newData)
       {
           ASSERT(!data()  ||  (newData->flags & (RW_REALIZING | RW_FUTURE)));
           // Set during realization or construction only. No locking needed.
           // Use a store-release fence because there may be concurrent
           // readers of data and data's contents.
           uintptr_t newBits = (bits & ~FAST_DATA_MASK) | (uintptr_t)newData;
           atomic_thread_fence(memory_order_release);
           bits = newBits;
       }
    
       // Get the class's ro data, even in the presence of concurrent realization.
       // fixme this isn't really safe without a compiler barrier at least
       // and probably a memory barrier when realizeClass changes the data field
       const class_ro_t *safe_ro() const {
           class_rw_t *maybe_rw = data();
           if (maybe_rw->flags & RW_REALIZED) {
               // maybe_rw is rw
               return maybe_rw->ro();
           } else {
               // maybe_rw is actually ro
               return (class_ro_t *)maybe_rw;
           }
       }
    
    #if SUPPORT_INDEXED_ISA
       void setClassArrayIndex(unsigned Idx) {
           // 0 is unused as then we can rely on zero-initialisation from calloc.
           ASSERT(Idx > 0);
           data()->index = Idx;
       }
    #else
       void setClassArrayIndex(__unused unsigned Idx) {
       }
    #endif
    
       unsigned classArrayIndex() {
    #if SUPPORT_INDEXED_ISA
           return data()->index;
    #else
           return 0;
    #endif
       }
    
       bool isAnySwift() {
           return isSwiftStable() || isSwiftLegacy();
       }
    
       bool isSwiftStable() {
           return getBit(FAST_IS_SWIFT_STABLE);
       }
       void setIsSwiftStable() {
           setAndClearBits(FAST_IS_SWIFT_STABLE, FAST_IS_SWIFT_LEGACY);
       }
    
       bool isSwiftLegacy() {
           return getBit(FAST_IS_SWIFT_LEGACY);
       }
       void setIsSwiftLegacy() {
           setAndClearBits(FAST_IS_SWIFT_LEGACY, FAST_IS_SWIFT_STABLE);
       }
    
       // fixme remove this once the Swift runtime uses the stable bits
       bool isSwiftStable_ButAllowLegacyForNow() {
           return isAnySwift();
       }
    
       _objc_swiftMetadataInitializer swiftMetadataInitializer() {
           // This function is called on un-realized classes without
           // holding any locks.
           // Beware of races with other realizers.
           return safe_ro()->swiftMetadataInitializer();
       }
    };
    

    isa_t

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    
    union isa_t {
       isa_t() { }
       isa_t(uintptr_t value) : bits(value) { }
    
       uintptr_t bits;
    
    private:
       // Accessing the class requires custom ptrauth operations, so
       // force clients to go through setClass/getClass by making this
       // private.
       Class cls;
    
    public:
    #if defined(ISA_BITFIELD)
       struct {
           ISA_BITFIELD;  // defined in isa.h
       };
    
       bool isDeallocating() {
           return extra_rc == 0 && has_sidetable_rc == 0;
       }
       void setDeallocating() {
           extra_rc = 0;
           has_sidetable_rc = 0;
       }
    #endif
    
       void setClass(Class cls, objc_object *obj);
       Class getClass(bool authenticated);
       Class getDecodedClass(bool authenticated);
    };
    

    isa.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    
    #     define ISA_MASK        0x0000000ffffffff8ULL
    #     define ISA_MAGIC_MASK  0x000003f000000001ULL
    #     define ISA_MAGIC_VALUE 0x000001a000000001ULL
    #     define ISA_HAS_CXX_DTOR_BIT 1
    #     define ISA_BITFIELD                                                      \
           uintptr_t nonpointer        : 1;                                       \
           uintptr_t has_assoc         : 1;                                       \
           uintptr_t has_cxx_dtor      : 1;                                       \
           uintptr_t shiftcls          : 33; /*MACH_VM_MAX_ADDRESS 0x1000000000*/ \
           uintptr_t magic             : 6;                                       \
           uintptr_t weakly_referenced : 1;                                       \
           uintptr_t unused            : 1;                                       \
           uintptr_t has_sidetable_rc  : 1;                                       \
           uintptr_t extra_rc          : 19
    #     define RC_ONE   (1ULL<<45)
    #     define RC_HALF  (1ULL<<18)
    
  2. 数据结构和算法

a. 练习学过的常用的

b. 学习新的(已算法为主)

二叉树

搜索二叉树

遍历(前序,中序,后序,广度,深度)

排序算法

二叉树深度

二叉树某层节点数

字符串相关算符

前缀

两数和

队列

  1. iOS app性能优化

    练习讲解

    cpu

    gpu

  2. https

    练习讲解

  3. weak

    练习讲解

  4. runloop

    练习讲解

    modes

    commonModes

    currentMode

    performSelect:withObject:afterDelay

    本质是往runloop添加定时器

    mode

    timers

    sources

    source0

    source1

    observers

  5. 定时器

    NSTimer

    依赖于runloop,内部会对target强引用,使用时注意循环引用

    不准确

    CFDisplay

    依赖于runloop,内部会对target强引用,使用时注意循环引用

    调用频率云屏幕的刷新频率一致, 60FPS

    CGD Timer (不依赖runloop)

  6. NSProxy

    遵守NSObject协议

    跟NSObject同一级别

    方法调用:如果自己没有实现,会直接来到转发阶段的methodSignatureForSelector:,因此效率较高

    没有init方法

    一些身份识别的方法也都返回代理对象的身份

  7. autorelease

    练习讲解

    与runloop的联系

    当前线程的当前loop即将休眠时释放

    autoreleasepool

    存储结构为poolPage的一个链表

    通过申明一个局部结构体变量

    pool开始时进行push操作(调用结构体上的构造方法),返回一个tag,在poolPage的某处压入一个标记值

    pool结束时进行pop操作(调用结构体上的析构方法),从当前位置对存储的每一个对象进行release操作,知道遇到之前压入的标记值为止

  8. copy

    拷贝的目的就是产生一份全新的副本

    如果原来的对象不可变,对其进行copy,由于产生的副本也不可变,因此浅拷贝即可

    其余都是深拷贝

    如果对象的某个属性用copy修饰,且其为可变类型,注意本质上copy产生不可变对象,所以在其上调用不可变类型的方法会因找不到方法而奔溃

  9. 程序内存布局

    代码段(.text)

    数据段 (.data)

    堆段(heap)// 低地址到高地址增长

    栈段(stack)// 高地址到低地址增长

  10. 内存管理

    TaggedPointer技术

    对于NSDate, NSNumber, NSSString等小对象

    当值比较小的时候,将其直接存储在指针里

    方法调用时会根据TaggedPointer做区别对待,不会走消息机制去查找方法实现

    iOS平台如果地址的高位是1,则标识用了TaggedPointer存储技术

    copy, strong的setter实现

    判等,如果不等,则旧对象做release操作,新对象做retain/copy操作,并赋值

  11. block

    数据结构

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    
    struct __block_impl {
    	void *isa;
       int Flags;
       int Reserved;
       void *FuncPtr;
    }
    
    struct __main_block_desc_0 {
       size_t reserved;
       size_t Block_size
       void *(void*, void*)copy; // 用于管理捕获的对象类型的内存
        (void *(void*)) dispose; // 用于管理捕获的对象类型的内存
    }
    
    struct __main_block_impl_0 {
       struct __block_impl impl;
       struct __main_block_desc_0* Desc;
       ... //捕获进来的变量
    }
    

    类型

    __NSGlobalBlock__ (继承自NSBlock,存储在数据区, 没有访问或捕获auto变量)

    __NSStackBlock__ (继承自NSBlock,存储在栈区,访问或捕获了auto变量)

    __NSMallocBlock__ (继承自NSBlock,存储在堆区)

    stack block调用copy, 变为malloc block

    global block调用copy, 没有作用

    malloc block调用copy, 增加引用计数

    ARC下某些情况下,编译器会自动对stack block调用copy,变为malloc block

    最为函数返回值时

    将block赋值给强指针时

    作为方法名含有usingBlock的cocoa ap的参数时

    stack block不会引用捕获的对象类型

    malloc block会引用捕获的对象类型(如果auto变量是__strong,就强引用;如果是__weak, 就弱引用)

    变量捕获

    局部auto: 值传递捕获

    局部static: 指针传递捕获

    全局变量:直接访问,不捕获

    block属性的建议写法

    MRC下用copy

    ARC下用strong, copy都可

    __block

    修改auto变量的值

    不能修饰static和global变量

    会把捕获的auto变量包装成以下结构

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    
    struct __Block_byref_age_0 {
    	viod *__isa;
       __Block_byref_age_0 *__forwarding;
       int __flags;
       int __size;
       int age;
    }
    
    struct __Block_byref_obj_1 {
       void *__isa;
       __Block_byref_obj_1 *__forwarding;
       int __flags;
       int __size;
       void (*__Block_byref_id_object_copy)(void*, void*);
       void (*__Block_byref_id_object_dispose)(void*);
       NSObject *obj;
    }
    
    struct __main_block_impl_0 {
       struct __block_impl impl;
       struct __main_block_desc_0* Desc;
       __Block_byref_age_0 *age; //强引用
    }
    

    暴露给外面访问的变量也是这个结构体中的变量: age.forwarding.age

    当block拷贝到堆上时,会拷贝引用的这个包装对象到堆上

    blcok对这个包装结构强引用

    ARC下被包装对象如果时__strong(默认)就强引用,如果是__weak就i弱引用

    MRC下被包装的对象不会被强引用,而是弱引用

    循环引用问题

    __weak(ARC)

    __unsafe_unretained(ARC, MRC)

    __block(MRC)

  12. runtime

    练习讲解

    验证疑惑

    在子类上交换子类没有实现而父类实现的方法

    1
    2
    3
    4
    
    func class_getInstanceMethod(
        _ cls: AnyClass?,
        _ name: Selector
    ) -> Method?
    

    Note that this function searches superclasses for implementations, whereas class_copyMethodList(_:_:) does not.

    hook

  13. 关联对象

    练习讲解

    isa有是否设置过关联对象的存储位

    通过关联对象及运行时实现给分类添加属性

    关联对象存储在一个全局的类似哈希表的一个结构中

  14. 消息机制

    练习讲解

    消息发送

    对象方法调用:通过实例对象里存储的isa指针找到类对象,首先在在类对象的cache(一个以Sel为key,方法实现为值的哈希表)里找,如果没有命中缓存,则在方法列表里查找,如果当前类的方法列表里没有找到,则沿着类对象的继承链往上找,如果找到即存入缓存并调用

    动态解析

    resolveInstanceMethod

    resolveClassMethod

    可以通过动态添加实现,并return YES; 重新开始查找

    消息转发

    可以在forwardTarget中返回某个对象,把方法处理转交给返回的对象

    如果上面方法没有实现,则有机会在methodSignature返回方法签名,forwardInvocation做进一步处理

  15. iOS多线程

    练习讲解

    pthread (生命周期程序员管理),使用较少,难度较大

    NSThread (生命周期程序员管理),使用较少,使用更加面向对象,简单易用

    GCD (自动管理),常用

    只要是同步就不会开启新线程

    主队列中就算异步也不会开启新线程,主队列中的任务就是在主线程执行的

    NSOperation(基于GCD),常用,使用更加面向对象

    Telegram线程相关

    a. 保活 (MediaPlayer解码)

    b. db数据读写

    死锁

    一般串行,同步会死锁

    死锁条件

    资源互斥访问,即每个资源每次只能给一个进程使用(也是资源有限的必要条件)

    不剥夺,即不能强行占用已分配给其他进程的资源

    请求和保持,即已经分配到的资源不释放,并请求其他资源

    环形等待,即形成一个资源请求或等待回路

    预防死锁

    资源独占,只有所有资源都可满足,才投入运行,即不会存在资源竞争对手

    资源顺序分配,即把资源分级,优先申请较低级的资源,优先释放较高级的资源,这样就不会出现环路

    银行家算法,分配之前进行安全性检查(按最大需求预分配,看会不会死锁),比较保守,分配矩阵(Allocation);需求矩阵(Need);最大需求矩阵(Maxreq);可用资源向量Available, Maxreq[i][j] = Need[i][j] + Allocation[i][j]; 尝试分配资源给进程pi, 资源请求矩阵Request,Available[j] := Available[j] - Request[i][j], Allocation[i][j] := Allocation[i][j] + Request[i][j]; Need[i][j] := Need[i][j] - Request[i][j]

    发现死锁

    进程资源图:资源用举行表示,资源个数用包含在矩形中的小圆点表示,进程用大圆表示;请求用进程指向资源的单向箭头表示;分配用资源指向进程的单向箭头表示

    化简进程资源图:试图满足进程的请求,即请求变分配,如果能把所有请求变为分配,则删除所有分配,把该进程变成孤立点

    如果能完全化简则不存在死锁,否则存在

    解除死锁

    资源剥夺,按最小代价来,强行剥夺足够数量的资源分配给死锁进程,以解除死锁状态

    撤销进程,按某种顺序逐渐撤销死锁进程,知道获得为接触死锁所需要的足够可用的资源为止

    优先级反转(Priority Inversion)wiki

    线程 H, M, L, 优先级关系为:P(H) > P(M) > P(L)

    H,L同时竞争资源R(或依赖于资源R),而M不要R(或不依赖资源R)

    L先得到了R,开始运行

    H由于等待R而阻塞

    如果M抢占了L的CPU(由于优先级较高),就会造成L不能及时释放资源R

    高优先级的H就间接被低优先级的M阻塞了

    优先级反转有时不会带来直接危害,这种情况下高优先级的线程被延迟的不那么明显,L最终也能释放共享资源R

    然而许多情况下优先级反转会造成严重问题。如果高优先级的线程对于R已经很饥渴了,也就是延迟严重,等了很久了,可能会造成系统故障或者触发系统预定义的一些措施,比如watchdog timer可能会重置整个系统

    优先级反转也可能会降低系统的感知性能。低优先级的任务往往由于其是否能即使结束不太重要而优先级较低(例如可能是一个批处理作业,或者非交互性活动)。而高优先级的任务更可能受限于严格的时间限制,(如可能正在向交互式用户提供数据,或者受实时响应保证的约束)

    OSSpinLock

    等待锁的线程处于忙等状态,一直占用着CPU资源

    不再安全,可能会出现优先级反转问题

    如果等待锁的线程优先级较高,由于它一直占用着CPU资源,优先级较低的线程可能会无法释放锁

    导入头文件 <libkern/OSAtomic.h>

    os_unfair_lock

    #import <os/lock.h>

    OSSpinLock的替代方案

    os_unfair_lock lock = OS_UNFAIR_LOCK_INIT;

    os_unfair_lock_lock(&lock);

    os_unfair_lock_trylock(&lock);

    os_unfair_lock_unlock(&lock);

    pthread_mutex

    #import

    pthread_mutexattr_t attr;

    pthread_mutexattr_init(&attr);

    pthread_mutextattr_settype(&attr, PTHREAD_MUTEX_NORMAL)

    pthread_mutex_t mutext;

    pthread_mutex_init(&mutex, &attr);

    pthread_mutex_lock(&mutex);

    pthread_mutex_trylock(&mutex);

    pthread_mutex_unlock(&mutex);

    pthread_mutexattr_destory(&attr);

    pthread_mutext_destroy(&mutex)

    pthread_cond_t

    pthread_cond_t condition;

    pthread_cond_init(&condition, NULL);

    pthread_cond_wait(&condition, &mutex);

    pthrad_cond_signal(&condition);

    pthread_cond_broadcast(&condition);

    pthread_cond_destory(&condition)

    pthread_rwlock (读写锁)

    #import

    多读单写

    pthread_rwlock_t lock;

    pthread_rwlock_init(&lock, NULL);

    pthread_rwlock_rdlock(&lock);

    pthread_rwlock_tryrdlock(&lock);

    pthread_rwlock_wrlock(&lock);

    pthread_rwlock_trywrlock(&lock);

    pthread_rwlock_unlock(&lock);

    pthread_rwlock_destory(&lock);

    dispatch_barrier_async (异步栅栏函数)

    NSLock

    对pthread_mutex普通锁的封装

    相当于pthread_mutex_init(&lock, NULL),或者pthread_mutextattr_settype(&attr, PTHREAD_MUTEX_NORMAL)

    NSRecursiveLock

    对pthread_mutex递归锁的封装

    相当于pthread_mutextattr_settype(&lock, PTHREAD_MUTEX_RECURSIVE)

    NSCondition

    对mutext和cond的封装

    wait

    signal

    broadcast

    waitUntilDate:

    NSConditionLock

    对NSCondition的进一步封装

    可以设置具体的条件值

  16. app架构

    练习讲解

    MVVM

  17. RxSwift

  18. 进程调度

    分级轮转

    由于高优先级阻塞进入高优先级队列

    时间片用完进入低优先级队列

    一般情况下,调度算法把相同的时间片分配给前台就绪队列的进程,优先满足其需要。只有当前台队列中的所有进程全部运行完毕或因等待I/O操作而没有进程可运行时,才把处理机分配给后台就绪进程,分得处理机的就绪进程立即投入运行。

    通常后台就绪进程于前台就绪进程分得的时间片有差异,对长作业可以采取增长时间片的办法来弥补。例如,若短作业的执行时间为50ms,而长作业的时间片可增长到150ms,这就大大降低了长作业的交换频率,减少了系统再交换作业时的时间消耗,提高了系统的效率。

    优先级法

    把处理机分配给就绪队列中具有最高优先级的就绪进程

    根据已占有处理机的进程是否可被剥夺这一原则,分为优先占有法和有效剥夺法

    优先占有法

    一旦某个最高优先级的就绪进程分得处理机之后,只要不是其自身的原因被阻塞(如要求I/O操作)而不能继续运行时,就一直运行下去,直至运行结束。

    优先剥夺法

    当一个正在运行的进程其时间片未用完时,无论什么时候,只要就绪队列中有一个比它优先级更高的进程,优先级高的进程就可以取代目前正在运行的进程,投入运行

    静态优先级确定

    进程类型

    系统进程比用户进程具有较高的优先级(设备进程优于前后台用户作业进程)

    特别时某些具有频繁I/O要求的进程,必须赋予它一种特权,当它需要处理机时,应尽量得到满足

    前台用户进程由于后台用户进程

    联机操作用户进程的优先级高于脱机用户进程的优先级

    对计算量大的进程所请求的I/O给与一个高优先级

    运行时间

    通常规定进程优先级于进程所需运行时间成反比

    此种方法对于长作业用户来说,有可能长时间等待而得不到运行的机会

    作业的优先级

    根据作业的优先级来决定其所属进程的优先

    一种常用于多道批处理系统的方法时,系统把用户作业卡上提供的外部优先级赋给该作业及其所创建的进程

    动态优先级

    进程的优先级在该进程的生存期间可以改变

    大多数动态优先级方案设计成:把交互式和I/O频繁的进程移到优先级队列的顶端;而让计算量大的进程移到较低的优先级上。

    对于一定时间周期,一个正在运行的进程,没请求一次I/O操作后其优先级就自动加1,显然此进程的优先级直接反映出I/O请求的频率,从而使I/O设备有很高的利用率

    在每级内按先来先服务或轮转法则分配处理机

  19. 设计模式(主要参考Java课程)

  20. 最近做项目遇到比较有挑战性的点

    练习讲解

  21. 操作系统之存储管理

    分页

    把存储分配固定大小的页

    把程序分为固定大小的页

    页表支持,寄存器支持

    把页表相关信息放到进程的PCB

    页号,页偏移

    页号+页始址找到页表项,查到物理块号(物理页号)

    段页式

    把存储分页

    把程序先分段,段内再分页

    段表支持,页表支持,寄存器支持

    段号,页号,页内偏移

    段表相关信息存到进程的PCB

    段始址+段号找到段表项,进而查到页表始址

    页表始址+页号找到页表项,进而查到物理块号(物理页号)

This post is licensed under CC BY 4.0 by the author.